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spectral bands, Tasseled Cap transformations, and 
eight different indices, including NDVI, (2) evaluate 
the performance gain with the addition of standard 
deviation, textural metrics, and additional seasons, 
and (3) compare the performance of SDMs built on 
these continuous spectral predictor sets to SDMs 
built on classified land cover data (e.g., percent forest 
cover).
Methods We used statewide point counts to build 
multi-scale SDMs for 13 avian species across Ore-
gon, USA. We compared the performance of SDMs 
built on each predictor set based on our objectives.
Results Of the Landsat-derived predictor sets, 
SDMs built on raw spectral bands had the highest 
overall performance with nearly equivalent perfor-
mance in Tasseled-Cap models. While performance 
gains from standard deviations, textural metrics, and 
additional seasons were minimal in raw-band and 
Tasseled-Cap models, gains were appreciable in sin-
gle-index models. Classified land cover models per-
formed equivalently to raw band models.
Conclusions When predictive performance is para-
mount, means of raw Landsat bands are strong pre-
dictors for avian SDMs. When parsimonious vari-
ables are essential, SDMs of single indices (e.g., 
NDVI) greatly benefit from additional information, 
such as standard deviation.

Keywords Remote sensing · Species distribution 
models · Landsat · Google Earth Engine

Abstract 
Context With greater accessibility and processing 
power from online platforms, summaries of remotely 
sensed data are increasingly used in species distribu-
tion models (SDMs). Comparisons of the predictive 
power of these environmental variables could inform 
SDMs moving forward.
Objectives We evaluated the performance of freely 
available Landsat data as predictor sets for SDMs. 
Our objectives were to (1) compare the performance 
of single season SDMs built on mean values of raw 
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Introduction

Remotely sensed data have been essential to char-
acterizing the environment for species distribu-
tion models (SDMs) for decades (Kerr et  al. 2001; 
Gottschalk et al. 2005; Cord et al. 2013; Randin et al. 
2020). Increased accessibility and processing power 
through free platforms like Google Earth Engine 
(Gorelick et  al. 2017) have catalyzed a proliferation 
in the use of summaries of satellite imagery. A myr-
iad of remotely sensed datasets and summary meth-
ods have been used in SDMs (e.g., Kerr et al. 2001; 
Buermann et al. 2008; Shirley et al. 2013) which has 
led to an immense number of satellite-derived envi-
ronmental predictor variables available to research-
ers. As few comparative studies exist (e.g., Cord et al. 
2014), there is a need to compare and document the 
relative value of each to SDMs. For the purposes 
of comparison, we categorize remotely sensed data 
into two main groups, both of which are commonly 
used to inform SDMs (Kerr and Ostrovsky 2003; 
He et al. 2015): raw satellite images, herein “unclas-
sified data”, which retain the continuous nature of 
the images (e.g., means of the image bands, texture 
metrics) and “classified data”, which are derived 
from satellite images and map image pixels into dis-
crete categories (e.g., land cover classes). This paper 
compares the predictive performance of unclassified 
Landsat-derived environmental predictor variables in 
SDMs and also evaluates how these predictor vari-
ables compare to those developed from classified land 
cover datasets.

Landsat, a multispectral satellite dataset commonly 
used in SDMs (Kerr and Ostrovsky 2003; Gottschalk 
et al. 2005), has acquired Earth observations continu-
ously since 1972. It has an update cycle of 16-days 
and a 30  m spatial resolution. While categorized as 
moderate resolution multispectral imagery, for use in 
predicting distributions of most wildlife, this is con-
sidered a high-resolution dataset. The temporal and 
spatial resolution of Landsat data and the extensive 
historical archive of radiometrically and geometri-
cally calibrated imagery make Landsat data appeal-
ing for modeling ecosystem processes (Kennedy et al. 
2014; Wulder et  al. 2019). Indeed, Landsat obser-
vations have been used extensively to characterize 
ecosystem structure and processes (e.g., Foody et al. 
1996; Pflugmacher et al. 2012; Baumann et al. 2017; 
Meigs et al. 2020).

Raw spectral bands from Landsat can inform 
SDMs through either direct summarization 
(Gottschalk et  al. 2005; Shirley et  al. 2013) or the 
computation of indices and transformations (Osborne 
et  al. 2001; Seto et  al. 2004; Buermann et  al. 2008; 
Parviainen et al. 2013). When working with modeling 
methods that benefit from fewer predictor variables, it 
may be advantageous to use indices, which are single 
values computed from the raw bands that character-
ize physical attributes of the landscape. For example, 
the normalized difference vegetation index (NDVI), 
which describes the spectral relationship between 
red reflectance and near-infrared reflectance and is a 
proxy for photosynthetic activity, is commonly used 
in SDMs (Osborne et al. 2001; Seto et al. 2004; Brad-
ley and Fleishman 2008; Krishnaswamy et al. 2009). 
Though not as frequently as NDVI, other indices such 
as the normalized difference snow index (NDSI) and 
enhanced vegetation index (EVI) have also been used 
in SDMs (Cord et al. 2014; Niittynen et al. 2018). The 
Tasseled Cap transformation is a common dimension-
ality reduction technique for spectral imagery that has 
also been used to inform SDMs (Zimmermann et al. 
2007; Oeser et  al 2020). The Tasseled Cap transfor-
mation is a reprojection of the raw bands into three 
dimensions representing brightness, greenness, and 
wetness (Crist and Cicone 1984). It is also possible 
to characterize temporal variation by summarizing 
remotely sensed imagery over seasons or to describe 
spatial variation in vegetation with textural metrics. 
Deriving the reflectance values for multiple seasons 
(e.g., spring, summer, fall) may allow SDMs to fur-
ther differentiate available habitats compared to SDM 
inputs derived from a single season (i.e., an image 
obtained during the peak of vegetation phenology or 
during a pre-defined breeding season). Recently, tex-
ture metrics have been shown to be strong predictors 
of bird distributions (Farwell et al. 2020).

An alternative to unclassified data are classified 
land cover datasets. Classified land cover datasets are 
produced by mapping the raw spectral values at each 
pixel into discrete land cover classes (e.g., urban, grass-
land, deciduous forest). For example, the National 
Land Cover Dataset (NLCD) (Dewitz 2019), which is 
derived from Landsat, consists of 20 classes which span 
categories such as human-developed, forests, and wet-
lands. A limitation to classified datasets is that they are 
generally released annually or every few years whereas 
unclassified datasets are updated at intervals measured 
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in days. The finer temporal resolution of the unclassi-
fied datasets allows for faster detection of environmen-
tal changes. Further, environmental information is lost 
due to the coarse aggregation of continuous spectral 
bands into discrete classes (Foody 2002; Gottschalk 
et al. 2005; Gillespie et al. 2008; Krishnaswamy et al. 
2009), which may limit the predictive performance of 
SDMs (Bradley and Fleishman 2008). Conversely, 
compositional information (i.e., proportions of land 
cover classes) may be gained with summaries of clas-
sified data. While summaries of raw spectral values 
may imply which types of land cover are more preva-
lent (e.g., a very green landscape is more likely covered 
in trees rather than water or barren land), they do not 
explicitly identify land cover classes. For species that 
prefer specific habitat types, knowing what proportion 
of an environment is composed of specific habitats may 
be more informative than summaries of raw spectral 
values. Due to ease of interpretation, ecologists fre-
quently use classified data to inform SDMs. For exam-
ple, Johnston et  al. (2021) suggests the use of classi-
fied land cover for developing environmental variables 
when modeling citizen science species records, such as 
eBird.

This paper compares the performance of SDMs 
trained on sets of habitat variables derived from Land-
sat imagery for several bird species in the state of Ore-
gon, USA. Our primary objectives were to (1) iden-
tify the indices or transformations of raw bands that 
consistently informed the highest performing SDMs 
across species, (2) examine whether data from addi-
tional seasons improved SDM performance, and (3) 
explore whether standard deviations or textural metrics 
improved SDM performance. Our secondary objec-
tive was to compare the performance of SDMs built on 
unclassified Landsat data to the performance of SDMs 
built on commonly used classified landcover datasets 
(NLCD and MODIS). Finally, we offer suggestions for 
applying remotely sensed data to SDMs with the goal 
of helping guide researchers through the many options 
faced when selecting remotely sensed data for SDMs.

Methods

Study area

We used the state of Oregon, in the Pacific North-
west of the United States of America as our study 

area. Oregon’s 255,026  km2 area includes nine dis-
tinct ecoregions, 12 Köppen climate types, an ele-
vational range from sea level to more than 3500  m, 
and habitats from densely populated cities to remote 
wilderness.

Bird surveys and sampling design

We used bird surveys conducted through the Oregon 
2020 project (Robinson et al. 2020). Count locations 
in Oregon 2020 were distributed across Oregon in a 
stratified random manner (Robinson et al. 2020). The 
strata were defined by the Public Land Survey Sys-
tem, which divides the state into 6 × 6-mile town-
ships, generating a total of 36 square-mile sections 
within each of the more than 2800 townships. Rob-
inson et al. (2020) selected at random a one square-
mile section from each township. They kept that sec-
tion if it had some form of public access such as a 
road or trail. If there was no access, they shifted the 
section to the next nearest section that had access and 
similar habitat type and elevation as determined from 
inspection of Google Earth imagery. Within each 
section, they conducted point counts approximately 
every 200 m along publicly accessible roads or trails. 
The modal number of locations sampled within each 
square was four and ranged from one to 12. Robinson 
et  al. (2020) supplemented this statewide sampling 
design with additional surveys conducted at 0.8-km 
intervals along nearly every accessible road in Ben-
ton and Polk Counties. They also included surveys 
conducted in a 200-m grid established across the 
William L. Finley National Wildlife Refuge in Ben-
ton County. Robinson et  al. (2020) showed that the 
proportional coverage of habitats available in Oregon 
was extremely similar to those covered by their point 
sampling scheme.

Three trained observers conducted 10,844 5-min 
stationary surveys during the breeding seasons (May 
15th to July 10th), 2011–2019 (Robinson et al. 2020). 
All surveys were performed between dawn and noon, 
unless bird activity noticeably declined earlier. At 
each survey, all birds detected were identified to spe-
cies. All sites were visited once. Distance sampling 
and time of detection methods were implemented 
in counts to allow for direct estimation of imper-
fect detection, but to simplify analyses and find-
ings, and to better mirror commonly available eBird 
data, which contain no such ancillary methods, we 
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removed these data and did not account for imper-
fect detection in our models. As our interest primarily 
lies in the comparative performance of environmental 
predictor sets, and imperfect detection derived from 
standard variables such as time of day and day of year 
should bias all models equivalently (e.g., all built 
on the same data), comparisons should remain unaf-
fected. Additionally, we reduced species counts to 
detections and non-detections. Robinson et al. (2020) 
provide further details.

Species selection

To represent a range of habitat types and levels of 
species’ habitat specializations, we selected thirteen 
species occurring in six common habitat types in 
Oregon (Table 1). All of these species were detected 
effectively by  the  sampling method  in Robinson 

et al. (2020) since they vocalize frequently during the 
breeding season. For each habitat, we included two 
or three species; one species was considered to be a 
generalist and one or two were considered specialists 
based on our own experiences and qualitative data 
(Marshall et al. 2003). Generalists often occupy a pri-
mary habitat and also other structurally similar habi-
tats, so we anticipated relationships between remotely 
sensed habitat data and species occurrence would be 
weaker than for specialist species and their habitats.

Remotely sensed data and spectral predictor sets

The basis for our analysis was three time-series of 
gap-free, radiometrically-consistent composited sat-
ellite imagery from which we computed spectral 
predictor sets. An overview of the image process-
ing workflow is shown in Fig. 1. First, we developed 

Table 1  Study species, the primary habitat(s) they occupy, whether we considered them to be generalists or specialists on the pri-
mary habitat type, and their sample prevalence in our Oregon 2020 data

Our usage of generalist and specialist are relative to the species in the study

Species Primary habitat Specialist or Gen-
eralist

Prevalence

Western Tanager
Piranga ludoviciana

Forest Generalist 0.2478

Hermit Warbler
Setophaga occidentalis

Coniferous forest canopy Specialist 0.2020

Pacific Wren
Troglodytes pacificus

Coniferous forest understory Specialist 0.1350

Sage Thrasher
Oreoscoptes montanus

Sagebrush Generalist 0.0432

Sagebrush Sparrow 
Artemesiospiza nevadensis

Mature sagebrush Specialist 0.0247

Swainson’s Thrush
Catharus ustulatus

Moist woodlands Generalist 0.2850

Hermit Thrush
Catharus guttatus

Higher elevation woods Specialist 0.0601

Western Meadowlark
Sturnella neglecta

Grassland/sagebrush Generalist 0.1621

Savannah Sparrow 
Passerculus sandwichensis

Grassland Specialist 0.0775

Yellow Warbler
Setophaga petechia

Riparian woods Generalist 0.0538

Yellow-breasted Chat
Icteria virens

Riparian/shrubs Specialist 0.0350

Ash-throated Flycatcher 
Myiarchus cinerascens

Juniper/oaks Generalist 0.0213

Gray Flycatcher
Empidonax wrightii

Juniper Specialist 0.0468
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three time-series of composited imagery, one each for 
the spring, summer, and fall seasons, using Landsat 
satellite imagery. Then, using the LandTrendr algo-
rithm, we processed the annual composites into a 
time-series of gap-free, radiometrically consistent 
images (Kennedy et al. 2010). Using these stabilized 
time-series, we computed ten spectral datasets: raw 
bands, Tasseled Cap transformations, and eight single 
indices across the study region. Finally, we calculated 
summaries (e.g., means) of the spectral datasets over 
buffers with multiple radii centered at the bird count 
locations for all three seasons. See Online Resource 1 
for a more detailed description of the image process-
ing workflow.

The spectral datasets we selected build off of those 
from past species distribution models (Gottschalk 
et al. 2005; Buermann et al. 2008; Shirley et al. 2013; 
Oeser et  al 2020). Specifically, we summarized raw 
spectral bands, their associated Tasseled Cap trans-
formations, and eight single-valued indices derived 
from the raw bands: NDMI, NDVI, NBR, NBR2, 
EVI, SAVI, MSAVI, NDSI (Table  2). The Tasse-
led Cap transformation is computed by projecting 
the spectral bands into three dimensions, or spectral 
indicators, that describe brightness, greenness, and 

wetness (Crist and Cicone 1984). We also included 
the Tasseled Cap Angle (TCA), as a fourth variable in 
the Tasseled Cap predictor set (Table 2). We selected 
the single-valued indices as they are frequently used 
in ecological remote sensing and are readily avail-
able to researchers as part of the Landsat Collection 
1 Surface Reflectance data produced from the USGS. 
In this analysis, we specifically examined single-date 
remote sensing metrics (i.e., they were computed 
using a single image) to constrain the number of pre-
dictors being investigated (Seto et al. 2004; Meddens 
et al. 2013).

For every count location and each of the ten spec-
tral datasets, we constructed spectral predictor sets 
by calculating summaries over the buffered regions 
for all three seasons. Specifically, we calculated the 
mean and standard deviation of each of the bands in 
the spectral datasets with 75, 600, and 2400 m radii 
buffers centered at the count location for spring, sum-
mer, and fall imagery (Table  3). Species respond to 
their environments at different scales (Wiens and 
Milne 1989). The use of multiple buffers to charac-
terize environmental covariates can ensure that a 
species-specific appropriate environmental scale is 
included (Hallman and Robinson 2020a). We selected 

Fig. 1  Flowchart of Landsat image processing using LandTrendr algorithm
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a range of buffers that have previously been shown 
to predict songbirds (Hallman and Robinson 2020a, 
2020b; Hallman et al. 2021). We matched the year of 
the species observation to the year in which the Land-
sat imagery was collected. In addition to the means 
and standard deviations of each of the bands, we cal-
culated seven GLCM texture metrics (Table 4) for all 
three seasons at all three buffer radii. Like standard 
deviations of bands, GLCM texture metrics character-
ize textural information (i.e., spatial arrangement) and 
have been shown to be informative of bird richness 
(Farwell et al. 2020).

In addition to the unclassified imagery, we sum-
marized two classified datasets to evaluate how the 
unclassified spectral predictor sets compare to those 
developed from classified imagery. Johnston et  al. 
(2021) recommend creating environmental vari-
ables by summarizing MCD12Q1 v006 (Friedl and 
Sulla-Menashe 2015), a classified MODIS dataset, 
by calculating the proportion of each class present 
in 2.5 × 2.5  km kernels centered at species records. 
Because this type of use of habitat composition data 
is so common, we focus on the compositional aspects 
of remote sensed data but acknowledge that configu-
ration variables also may contribute to accurate pre-
diction of species distributions (Mazerolle and Vil-
lard 1999). The spatial resolution of MCD12Q1 is 

500 × 500 m which is much larger than the 30 × 30 m 
resolution of Landsat imagery and the resulting spec-
tral predictors. To maintain the same spatial resolu-
tion across unclassified and classified data, we com-
puted summaries from NLCD2016, a classified 
dataset derived from Landsat which has the same 
30 × 30  m resolution. A limitation to NLCD is that 
it only contains data for the United States compared 
to MCD12Q1’s global coverage. We calculated the 
proportion of land cover classes present for the three 
buffer radii, as is commonly done when summarizing 
classified data (Thuiller et  al. 2004; Johnston et  al. 
2021). We also computed summaries of the much 
coarser resolution MCD12Q1 to compare to the best 
practices of Johnston et al. (2021), however, we fully 
expect the MCD12Q1 predictor set to have degraded 
performance compared to the NLCD predictor set 
due to the differences in resolution. We included the 
MCD12Q1 predictor set to highlight the importance 
of selecting datasets with appropriate resolution for 
the given modeling task. For large scale studies, it 
may be impractical to use datasets with such high res-
olution (e.g., NLCD), but for more localized studies, 
such as ours, the higher resolution data may lead to 
improved model performance.

Proportional summaries of classified land cover 
data are composed of the proportions of all land cover 

Table 3  Example of spectral predictor sets for mean summer values

As an additional example, the raw bands Sp/Su/Fa means and standard deviations spectral predictor set contains 108 variables (18 
means and 18 standard deviations for each of the three seasons)

Spectral dataset Image bands Buffer radii Season Summary method Total # of variables 
in spectral predictor 
set

Raw bands B1, B2, B3, B4, B5, B7 75, 600, 2400 m Summer Mean 18
Tasseled Cap TCB, TCG, TCW, TCA 75, 600, 2400 m Summer Mean 12
Normalized Difference Vegetation 

Index (NDVI)
NDVI 75, 600, 2400 m Summer Mean 3

Normalized Difference Moisture 
Index (NDMI)

NDMI 75, 600, 2400 m Summer Mean 3

Normalized Burn Ratio (NBR) NBR 75, 600, 2400 m Summer Mean 3
Normalized Burn Ratio 2 (NBR2) NBR2 75, 600, 2400 m Summer Mean 3
Enhanced Vegetation index (EVI) EVI 75, 600, 2400 m Summer Mean 3
Soil Adjusted Vegetation Index 

(SAVI)
SAVI 75, 600, 2400 m Summer Mean 3

Modified Soil Adjusted Vegetation 
Index (MSAVI)

MSAVI 75, 600, 2400 m Summer Mean 3

Normalized Difference Snow Index 
(NDSI)

NDSI 75, 600, 2400 m Summer Mean 3
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classes present in the given region. To help determine 
if any changes in model performance across the clas-
sified and unclassified predictor sets are due to the 
compositional information intrinsic to proportional 
summaries, we discretized the NLCD summaries 
with binary indicators to represent all present classes 
in the buffered regions. The discretized NLCD sum-
maries only indicate the presence of land cover 
classes in place of proportion. While the discretized 
NLCD summaries do not contain proportional infor-
mation, they still inform which land cover classes are 
present and, therefore, still arguably contain more 
information about the compositional makeup of the 
region than mean and standard deviation of unclassi-
fied imagery.

Experimental design

Predictor variables

In total, we built 80 models, one for each of the 80 
spectral predictor sets (ten spectral datasets with eight 
season and summary method combinations), for each 
of the 13 species. For all models we included sum-
maries from the three buffer radii (75, 600, 2400 m) 
since multi-scale SDMs have been shown to outper-
form single-scale models (Hallman and Robinson 
2020a, b). With the mean values of the raw bands 

taken over the buffered regions from the summer 
imagery as our baseline model (i.e., raw bands sum-
mer means), we evaluated the effects of adding means 
from additional seasons, standard deviation of the 
buffered regions, GLCM texture metrics, and combi-
nations of these summary methods.

In addition to evaluating the unclassified spectral 
predictor sets, we also included classified imagery 
in our comparison. We compared models fit using 
unclassified spectral predictor sets to those fit with 
a classified spectral predictor set computed accord-
ing to the best practices of Johnston et al. (2021) (i.e., 
proportion of land cover classes present in a region 
surrounding the species record). Johnston et  al. 
(2021) recommends summarizing MCD12Q1 which 
has 500 × 500 m resolution, which is much larger than 
the 30 × 30 m resolution of our spectral predictor sets. 
For a more even comparison of classified to unclassi-
fied predictor sets, we included a predictor set derived 
from 30 × 30 m NLCD data which matches the reso-
lution of our unclassified spectral predictor sets. To 
investigate if the predictive performance of the clas-
sified predictor set had an advantage due to the pro-
portional nature of the summaries, we also included 
discretized NLCD summaries in our comparison.

We did not perform variable selection as it was 
unnecessary in this study. Generally, analyses include 
variable selection for a variety of reasons, includ-
ing computational considerations, dimensionality 

Table 4  A description of the textural metrics calculated for this analysis

The notation is adopted from Haralick and Shanmugam (1974): p(i,j) is the gray-tone spatial dependence matrix calculated for a 
given angular offset. The terms μx, μy, σx, and σy describe the mean and standard deviation of the marginal probability distributions 
Px(i) and Py(j) (see Welch et al. (1988) for details)

Name (abv.) Description Calculation Source

Contrast A measure of the average amount of local variation (Haralick 
and Shanmugam 1974)

=
∑Ng−1

n=0
n2{

∑Ng

i=1

∑Ng

j=1
p(i, j)} Haralick et al. (1973)

Correlation Characterizes linear gray-tone dependencies (Haralick and 
Shanmugam 1974)

∑

i

∑

j (ij)p(i,j)−�x�y

�x�y

Haralick et al. (1973)

Variance Measures the dispersion of the of values in the GLCM matrix 
(Welch et al. 1988)

∑

i

∑

j

(i − �)2p(i, j) Haralick et al. (1973)

Entropy Describes the randomness of values in the image (Welch et al. 
1988)

= −
∑

i

∑

j

p(i, j) log[p(i, j)]. Haralick et al. (1973)

Inertia Measures the spread of values in the GLCM matrix (Welch 
et al. 1988)

=
∑

i

∑

j (i − j)
2p(i, j) Conners et al. (1984)

Shade Quantifies the skewness of the distribution of values in the 
GLCM matrix (Welch et al. 1988)

=
∑

i

∑

j

(i + j − �x − �y)
3p(i, j) Conners et al. (1984)

Prominence Quantifies the tailedness of the GLCM matrix (Welch et al. 
1988)

=
∑

i

∑

j

(i + j − �x − �y)
4p(i, j) Conners et al. (1984)
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reduction, and ease of interpretation, but these moti-
vations did not pertain to our approach. There were 
no computational considerations, because random 
forests can accommodate many predictor variables of 
different types and correlation among input variables 
does not inhibit the model fitting algorithm. Dimen-
sionality reduction can be a motivation separately 
from computational issues, for example when it is 
necessary for all models being compared to have the 
same number of inputs. This need could arise when 
fitting and evaluating models on the same training 
dataset. In such a case, models with more predictor 
variables have an advantage since they may use addi-
tional variables to fit the data more closely, even if 
the correlations they exploit are spurious (i.e., models 
with more variables can overfit training data). How-
ever, we used spatially distinct training and test sets 
(described further below) to avoid overfitting; if the 
models with greater numbers of variables in their 
predictor sets fit the training data better by exploiting 
spurious correlations, those correlations would disap-
pear in the test data, resulting in lower predictive per-
formance. In our study design, if models with larger 
predictor sets perform better on the test data, then 
they reflect additional information about the species-
environment relationship that generalizes to the test 
data. Note that this is true not just for random forests 
but also for other modeling approaches. Additionally, 
variable selection may be used to aid model interpre-
tation by reducing correlation among input variables, 
which is a major hurdle for determining variable 
importance. Indeed, remotely sensed inputs are gen-
erally highly correlated (Zimmermann et  al. 2007), 
but this is not an issue for conclusions drawn from 
the predictive power of random forests, as long as the 
correlation structure remains constant across training 
and test sets (Dormann et al. 2012).

Species distribution models

We compared the performance of the spectral predic-
tor sets by predicting species occurrences with ran-
dom forest models. For each species analyzed, we fit 
the random forest models to predict detection versus 
non-detection at every count location. Random for-
ests can fit nonlinear relationships between predic-
tors and the response variables automatically (Cutler 
et  al. 2007). This flexibility allowed us to compare 
the overall performance of the different predictor sets 

without committing to particular functional forms 
(e.g., linear) of their effects on the response. Random 
forests have only two tuning parameters and since our 
preliminary analyses indicated that our models were 
not sensitive to these parameters, as is the common 
case (Breiman 2001; Genuer et al. 2008), we set the 
number of variables to consider at each split to the 
default of the square root of the number of predictor 
variables and the number of trees to fit to be 5000. All 
of the species we analyzed had more non-detections 
than detections, and some had very few detections, 
resulting in substantial class imbalance (Table 1). To 
address this issue, we used balanced random forests 
(Chen et al. 2004), which select an equal number of 
detections and non-detections in the bootstrap sample 
drawn for each tree by down-sampling the majority 
class. Balanced random forests is a method suggested 
by Johnston et  al. (2021) for handling class imbal-
ance. We fit all random forest models in R version 
3.6.0 (R Core Team 2019) with package ‘randomFor-
est’ (Liaw and Wiener 2002) and set parameter samp-
size to create balanced trees.

Performance estimates computed on spatial data 
may be biased by spatial autocorrelation when train-
ing and test points are close to one another (Roberts 
et al. 2017). To address this, we split the data into ten 
spatially distinct folds using the R package ‘blockCV’ 
(Valavi et  al. 2019). We imposed a 10 × 10  km grid 
over the study region, numbered the grid cells, and 
let blockCV randomly assign each cell to one of the 
ten  folds. This process was repeated 100 times and 
the best assignment of grid cells to folds was kept, 
as determined by  blockCV (evaluated by the most 
uniform spread of presences and absences per fold) 
(Valavi et  al. 2019). The ten  folds were fixed across 
all models for a species to ensure that models for 
each variable set were built and tested on the same 
data. We then evaluated models with 10-fold cross 
validation. With this method, one spatial fold is with-
held from the training data and all model evaluation 
is conduction on the withheld fold. The process is 
repeated ten times to obtain an evaluation of model 
performance based on all data. Since models are 
never evaluated with the same data on which they are 
trained, test data retain a degree of independence.

With our 10-fold cross validation scheme, we 
evaluated model performance with the area under the 
receiver operating characteristic curve (AUC) and 
computed 95% DeLong confidence intervals using 
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the R package ‘pROC’ (Robin et al. 2011). We chose 
AUC to avoid the subjective, potentially model- and 
species-specific process of selecting a classification 
threshold. While issues with the AUC’s ability to 
assess absolute model performance have been noted 
in the literature (Lobo et al. 2008), AUC is appropri-
ate for our model comparison task. To assess whether 
the AUCs were overly optimistic, as can be the case 
with highly imbalanced data (Davis and Goadrich 
2006), we randomly down-sampled non-detections in 
the independent test set to obtain an equal number of 
detections and non-detections. Having an equal num-
ber of detections and non-detections did not have a 
substantial impact on the AUCs, so we did not per-
form any down-sampling when calculating AUCs in 
the presented results.

Statistical testing

In order to identify which spectral predictor sets per-
formed best across the entire set of species, we com-
pared the performance of the different predictor sets 
across the group of species with the Friedman anal-
ysis of variance test (R’s base version) for repeated 
measures and non-normally distributed data. We 
controlled for species by calculating the percent dif-
ference in AUC from the mean AUC of the predictor 
sets for each species and subsequently performed all 
tests on the percent difference in AUC from the spe-
cies mean AUC. To identify which spectral predictor 
sets were statistically different, we performed post-
hoc analysis with Nemenyi-Tests, R package ‘PMC-
MRplus’ (Pohlert 2020) which evaluates pairwise 
multiple comparisons of mean ranks.

Results

Overall, our models performed well. While Sagebrush 
Sparrow, a habitat specialist, was the species with 
the highest performing models with a mean AUC of 
0.9666, Western Tanager, a habitat generalist, had 
the lowest performing models with a mean AUC of 
0.6904 across all unclassified spectral predictor sets 
(Fig.  2). Across all species, the raw bands spectral 
predictor sets were the top performing. Adding sea-
sonal and textural information to the summer means 
had little impact on the raw-bands and Tasseled-Cap 
models, but did improved the single-index models 

(Figs.  3, 4). These patterns were consistent across 
all habitat types and species specialization (Table 5; 
Fig.  2). NLCD, the classified land cover data with 
the same spatial resolution of Landsat, had equiva-
lent performance to the raw-bands models, whereas 
MCD12Q1 with its much larger spatial resolution, did 
not perform nearly as well (Fig. 5).

Which index or transformation of the raw bands best 
predicts species?

Across species, the raw-bands models had the high-
est AUCs among the summer means spectral predic-
tor sets, with a mean AUC of 0.8990 (Table 5; Fig. 3: 
Summer means). Within individual species, the raw-
bands models had the highest AUC for 11 of the 13 
species analyzed (Fig.  2). Sagebrush Sparrow and 
Yellow Warbler were better modeled by other spectral 
predictor sets, but only narrowly, and with the raw-
bands models as second best.

Models built with the next highest performing 
spectral predictor set, the Tasseled Cap transforma-
tions, did not statistically differ in performance from 
the raw-bands models (p-value = 0.9989, Nemenyi 
post-hoc Friedman). Across species, the Tasseled-
Cap models had a mean decrease in AUC from the 
raw-bands models of only 0.0034.

Across all species, the single-index models had an 
average 0.0784 decrease in AUC from the raw-bands 
models. For all but one of the species (and only nar-
rowly), the single-index models were outperformed 
by the raw-bands models. The highest performing sin-
gle-index model was the NDVI model which exhib-
ited moderate evidence of being statistically different 
from the raw-bands models (p-value = 0.0709, Neme-
nyi post-hoc Friedman) with a mean decrease in AUC 
from the raw-bands models of 0.0505. The remain-
ing single-index models were all statistically differ-
ent from the raw-bands models (p-values < 0.0169, 
Nemenyi post-hoc Friedman). Apart from the NDVI 
models having the highest average performance 
across the single-index models, there were no clear 
patterns as to which indices best predicted species, 
with different indices producing higher AUCs for dif-
ferent species (Fig. 2).
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How does adding additional seasons to the summer 
means impact predictive performance?

Adding summaries from spring and fall to the summer 
spectral predictor sets had a small positive impact on 
model performance, with an overall average increase 
in AUC across all models of 0.0445 (Fig. 3). The top 
two performing summer means spectral predictor sets 
(raw bands and Tasseled Cap) saw a much smaller 
increase in AUC of 0.0083 compared to the single 
indices which had an increase in AUC of 0.0536.

How does adding standard deviations and texture 
metrics to the summer means impact predictive 
performance?

Across species, inclusion of standard deviations had 
a small positive impact on model performance with 
an overall average increase in AUC across all spec-
tral predictor sets of 0.0359 (Fig.  3). The top two 

performing summer means spectral predictor sets 
(raw bands and Tasseled Cap) saw an increase of 
0.0097 in AUC while the single-index predictor sets 
saw a 0.0424 increase in AUC.

Adding the GLCM texture metrics to the summer 
means spectral predictor sets also had a small positive 
impact on model performance, with a mean increase 
in AUC across all spectral predictor sets of 0.0674 
(Fig.  3). There was a 0.0127 increase in AUC from 
the top two summer means spectral predictor sets 
(raw bands and Tasseled Cap) and a 0.0811 increase 
in AUC for the single-index predictor sets.

Adding combinations of the additional seasons, 
standard deviations and texture metrics to the summer 
means did not have a significant impact on the raw-
bands model (Fig.  4). For comparison, we present 
the same analysis for NDVI, a top performing single-
index model (Fig. 4).

Fig. 2  Performance of the 
spectral predictor sets when 
summarized by their sum-
mer means
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How do the unclassified summer means compare to 
classified remotely sensed predictor sets?

The proportional NLCD summaries had very good 
performance, with a negligible difference from 
the raw bands summer means (p-value = 0.9900 
Nemenyi post-hoc Friedman; Fig.  5). The discre-
tized NLCD summaries did not perform as well as 
the proportional NLCD summaries, with a mean 
decrease in AUC of 0.0122 from the raw bands 
summer means models. Unlike the proportional 
NLCD summaries, the discretized NLCD summa-
ries were found to be statistically different from the 
summer means of the raw bands (p-value = 0.0320 

Nemenyi post-hoc Friedman; Fig. 5). As expected, 
there was significant evidence that the coarse reso-
lution MCD12Q1 proportional summaries were sta-
tistically different from the summer means of the 
raw bands (p-value = 3.1e−05 Nemenyi post-hoc 
Friedman; Fig.  5) with a 0.0693 decrease in AUC 
from the raw bands summer means.

Discussion

Our  results yielded three important insights regard-
ing models built on unclassified remotely sensed data: 
(1) raw bands perform better than their summaries, 
(2) including additional seasons helps single-index 
models but has little effect on raw-bands or Tasseled-
Cap models, and (3) including standard deviations 
or textural metrics helps single-index models but has 
little effect on raw-bands or Tasseled-Cap models. 
Our experimental design protected against overfit-
ting by judging performance on spatially distinct test 
sets. This strategy is sound for comparing models 
even with differing numbers of variables, so we can 
conclude that the performance drop from the raw-
bands models (with more variables) to the various 
reflectance summarizations (with fewer variables) is 
due to the reduced ability of the latter to characterize 
the environment. The magnitude of the performance 
drop speaks to the amount of environmental signal 
lost. For example, AUCs were greatly reduced from 
the rawbands to the NDSI models, because NDSI, an 
index for characterizing snow, is a substantially inad-
equate summary for the species in our analysis. In 
contrast, differences between the raw-bands and the 
Tasseled-Cap models were negligible, indicating that 
they are nearly equivalent in their ability to represent 
relevant signal for predicting species.

Raw bands perform better than their summaries

When using mean values alone, models built on raw 
bands performed consistently better than all other 
methods of summarization.  We saw an insignificant 
decline in performance following the dimensional-
ity reduction from six raw bands to the four Tasse-
led Cap transformations and an even larger, and sta-
tistically significant, decline in performance with the 
reduction in dimensions from the raw bands to single 
indices. It is not surprising that the single indices had 

Fig. 3  Mean AUCs of the spectral predictor sets for each of 
the summary methods averaged across all 13 species. Black 
dots indicate outliers that fall outside the whiskers of the box 
plots
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degraded performed given that they are computed 
from a small subset of the raw bands, whereas the 
Tasseled Cap transformations essentially maintain 
the principle components of the raw bands. In other 
words, the single-summary transformations starve 
the models of environmental information critical for 
SDMs. Shirley et al. (2013) compared summaries of 
raw Landsat bands to NDVI and similarly found that 
raw bands outperformed NDVI in predicting bird 
distributions.  These models do have differing num-
bers of input variables: six bands and three radii for 
18 variables in the raw-bands models, four bands 
and three radii for 12 variables in the Tasseled-Cap 

models, and one band and three radii for three vari-
ables in the single-index models. If, as in our study, 
predictive performance is the goal and ML methods 
that handle many predictor variables are used, we 
suggest the use of raw bands summarized at multi-
ple radii. Interpreting the effects of specific variables, 
however, can be difficult with sets of correlated input 
variables, like variables summarized at multiple radii. 
Classic approaches such as generalized linear models 
(GLMs)  usually  require strict variable selection, but 
interpretation of the effects of variables  is  straight 
forward (e.g.,  effect sizes and p-values). When the 
interpretation of variables is the primary objective or 

Fig. 4  A comparison of 
the AUCs for all summary 
methods for NVDI and 
raw-bands models averaged 
across all 13 species

Table 5  Mean rank and standard deviation for the spectral 
predictor sets calculated across species

Spectral predictor Average rank Standard 
deviation

Raw bands 1.15 0.38
Tasseled Cap 2.23 0.73
NDVI 4.69 2.02
NBR 5.31 1.75
SAVI 5.92 1.32
NDMI 5.92 2.43
NBR2 6.08 2.75
MSAVI 6.54 1.61
EVI 7.08 2.14
NDSI 10.00 0.00 Fig. 5  Comparison of mean AUCs for classified summaries 

and the unclassified raw bands summer means. The AUCs are 
averaged across all 13 species
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other modeling methods are employed, dimensional-
ity reductions may  be beneficial. In these cases, we 
suggest  the  Tasseled Cap  transformations  or a sin-
gle  index like NDVI, our highest performing single-
index model.  If using a single index, however,  we 
recommend including additional summaries, such as 
standard deviation  (Fig.  3).  Apart from NDVI mod-
els having the highest average performance and NDSI 
models performing consistently poorly across spe-
cies, nearly all  other  single-index models performed 
similarly with a reduction in AUC from the raw band 
models of about  0.08.  Given that NDSI is meant to 
capture areas of snow well and none of our study spe-
cies specialize in snowy habitats, it makes sense that 
it performs the worst of our single-index models. We 
cannot rule out that NDSI may perform well with spe-
cies that do specialize in snowy habitats (e.g., Rosy-
Finches Leucosticte spp.).  Methods such as pseudo-
scale optimization may be employed to further reduce 
the number of variables associated with multi-scale 
models while ensuring that appropriate scales are 
included (McGarigal et al. 2016).

Including additional seasons helps single-index 
models but has little effect on raw-bands or 
Tasseled-Cap models

Although the inclusion of additional seasons hardly 
increased performance in the raw-bands and Tasse-
led-Cap transformation models, their inclusion did 
increase the performance of single-index models. 
Researchers tend to default to spring or “breeding 
season” environmental data to match the timing of 
observational data, and perhaps more importantly, 
because many species are migratory. Twelve of our 
13 species are migratory and depart Oregon after 
their breeding season. Remotely sensed data from 
winter might therefore be expected to contribute lit-
tle to explaining distributions. However, the addi-
tion of information from other seasons may help to 
differentiate between habitats whose spectral quali-
ties are similar during a single season (Bino et  al. 
2008; Senf et al. 2015). For example, deciduous and 
coniferous forests may have similar spectral quali-
ties during the breeding season, but different spectral 
qualities following autumnal leaf loss. The seasonal 
contrast could improve model predictions. Indeed, our 
findings supported this idea, but increases in model 

performance were primarily restricted to single-index 
models (Fig.  3). Future studies  could consider more 
complex summaries for quantifying seasonality such 
as multi-temporal metrics, which  could potentially 
yield greater gains in model performance (Potapov et 
al. 2019). Habitats and their suitability may be suffi-
ciently described by their unique sets of raw band and 
Tasseled Cap values, making the inclusion of addi-
tional seasons unnecessary.

Including standard deviations or textural metrics 
helps single-index models but has little effect on 
raw-bands or Tasseled-Cap models

As with additional seasons, although there was little 
improvement in model performance associated with 
the inclusion of standard deviations or textural met-
rics in  the  raw-bands  or Tasseled-Cap  models, their 
inclusion did increase performance in single-index 
models.  Farwell et  al. (2020)  extracted texture met-
rics, some identical to those in our study, from two 
remotely sensed datasets and found the metrics cap-
tured several aspects of vegetation heterogeneity that 
were informative of species richness. Standard devia-
tions or textural metrics add information on the het-
erogeneity of spectral qualities within a location. This 
may correspond to the heterogeneity of habitats or the 
categorization of single habitats with heterogenous 
spectral qualities (e.g.,  sparse juniper woodlands). 
Either way, we  might  expect an increase in perfor-
mance.  Though our data support this,  increases in 
performance were  primarily in  single-index models 
(Fig.  3). As with seasons, it may be that the unique 
combinations of spectral values contained within raw 
bands and  the  Tasseled Cap transformations may 
adequately describe fragmentation and heterogene-
ity within an area, making the inclusion of standard 
deviations and textural metrics unnecessary.  Based 
on these findings, we suggest that when using a sin-
gle index (e.g., NDVI), additional summaries, such as 
seasonal or textural, should be included.

Classified v. Unclassified data

While several studies have found SDMs built with 
unclassified data outperform those trained on clas-
sified data, our NLCD model had essentially equal 
performance to our highest performing unclassified 
model (Fig. 5). Cord et al. (2014) compared classified 
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land cover to continuous remotely sensed variables 
for 30 tree species and found that continuous unclas-
sified data far outperformed classified land cover for 
predicting distribution patterns. Oeser et  al. (2020) 
found that habitat metrics derived from Landsat 
Tasseled Cap components and binary snow masks 
outperformed land cover-based metrics. Given the 
expected reduction in information associated with 
transforming continuous raw bands into discrete land 
cover classes, we were surprised at the high perfor-
mance of the NLCD models. It is likely, however, 
the high performance of the NLCD models could be 
region-specific (i.e., NLCD models may not be com-
parable to Landsat-based models at a continental 
scale in which the land cover classes contain more 
variation in habitat types). Additionally, we suspect 
that summarizing land cover data by percent cover 
adds information about land cover composition that 
is not captured by summaries of unclassified imagery. 
Though we summarize the central tendency and vari-
ance of raw bands with means and standard devia-
tions, these summaries do not necessarily correspond 
to the quantity of any particular type of habitat. While 
unclassified data might better characterize environ-
mental differences within a single habitat type, clas-
sified data captures the proportions of each habitat 
type.

The relatively minor loss of performance in our 
discretized NLCD models, however, indicates that 
the proportional information may be playing a minor 
role compared to the added information associated 
with grouping pixels into discrete land cover classes. 
By discretizing our NLCD data we removed the pro-
portional information it contained which allowed us 
to directly examine the importance of proportional 
information compared to the categorization and 
occurrence of each class. When we classify habi-
tats from spectral imagery, we inherently add some 
implicit information on similarities between pixels 
(e.g., vegetation structure or species composition). 
This additional information may explain the relatively 
high performance of models informed by discretized 
land cover. Further, abundance models are likely 
more sensitive to information on amount or propor-
tion of habitat than distribution models. When mod-
eling species occurrence, even small areas of suitable 
habitat can be occupied.

As expected, we found a relatively large loss 
of performance (0.07 AUC) in models using 
MCD12Q1 data (Fig. 5). While NLCD has the same 
30 m resolution as the spectral data, MCD12Q1 is 
characterized at a 500 m resolution. We anticipated 
MCD12Q1 would have decreased performance 
compared to NLCD due to their differences in 
resolution. As per Johnston et  al. (2021), we sum-
marized MCD12Q1 data within a 2500 × 2500  m 
kernel, which corresponds loosely to a radius of 
1250  m. In contrast, we characterized our unclas-
sified remotely sensed data and the NLCD data at 
three scales: 75, 600, and 2400 m (radii from count 
location). By including only a single scale, and 
lower resolution data to begin with, MCD12Q1 data 
contained less information than NLCD data in this 
study and may be characterized at a scale too broad 
to maximize accuracy of predicting local avian 
occurrences. The differences in model performance 
between the NLCD and MCD12Q1 predictor sets 
suggests that when performing localized studies in 
regions that do not contain high resolution classi-
fied data, unclassified data should be considered.

Summaries of classified and unclassified 
remotely sensed data within buffers differ. Where 
a mean NDVI value corresponds to some level of 
vegetation or biomass, it is difficult to translate such 
a value into real-world management. For exam-
ple, picturing 55 percent temperate forest within 
a region is easier to visualize than a mean NDVI 
value of 0.4957. There are always tradeoffs. One 
issue with using proportions of land cover is that the 
number of variables greatly increases (e.g., 16 land 
cover classes as opposed to a single NDVI value) 
and this issue is only amplified if researchers are 
interested in datasets with a greater number of land 
cover classes. If interested in a small set of specific 
species, the use of select land cover classes paired 
with an interpretable modeling method such as 
GLMs, may be most appropriate. Though we found 
no decrease in model performance with classified 
NLCD data, we did not incorporate models with 
only a subset of pre-determined land cover classes, 
nor did we test GLM. These methods should be 
studied in future research.

A main caveat in our study is that our results are 
based on 13 bird species over the state of Oregon. 
Although we chose the species to represent a wide 
diversity of habitats and degrees of specialization, 



1013Landsc Ecol (2022) 37:997–1016 

1 3
Vol.: (0123456789)

our findings may not apply to organisms that utilize 
geographic space differently from this set of song-
birds or experience different varieties and arrange-
ments of habitats in other geographies. That said, 
our approach to discern differences in performance 
could easily be adapted for other species and loca-
tions. It is also possible that our results are specific 
to modelling occurrences and that abundance mod-
eling may reveal different patterns of performance 
in the environmental predictor sets.

Conclusions

To our knowledge, this is the most extensive study 
to directly compare the effects of remotely sensed 
summary methods on SDMs. We analyzed the rela-
tive performance of different summary methods for 
continuous unclassified Landsat data and two classi-
fied land cover datasets to help inform which sets of 
variables are most predictive of bird distributions. 
Overall, we recommend the use of summer means 
of the raw bands because they consistently outper-
formed all other spectral predictor sets and did not 
require additional seasonal or textural information 
to achieve their highest performance. However, if 
fewer variables is imperative, we recommend using 
the summer mean and standard deviation of NDVI 
as additional seasons and textural information are 
important for improving the predictive performance 
of single indices. Another important, and surprising, 
finding was the essentially identical performance of 
the classified NLCD summaries and the raw bands. 
Contrary to other studies (Cord et al. 2014; Halstead 
et al. 2019; Oeser et al. 2020), classified summaries 
did not exhibit a performance decrease compared 
to the continuous unclassified summaries. While 
the classified NLCD models achieved equal perfor-
mance to the raw band models, future work should 
investigate the source of NLCD’s high performance 
and evaluate how NLCD-based variables perform in 
the more challenging task of predicting abundances.
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